Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Infection ; 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2316848

ABSTRACT

PURPOSE: Identification of patients at risk of complicated or more severe COVID-19 is of pivotal importance, since these patients might require monitoring, antiviral treatment, and hospitalization. In this study, we prospectively evaluated the SACOV-19 score for its ability to predict complicated or more severe COVID-19. METHODS: In this prospective multicenter study, we included 124 adult patients with acute COVID-19 in three German hospitals, who were diagnosed in an early, uncomplicated stage of COVID-19 within 72 h of inclusion. We determined the SACOV-19 score at baseline and performed a follow-up at 30 days. RESULTS: The SACOV-19 score's AUC was 0.816. At a cutoff of > 3, it predicted deterioration to complicated or more severe COVID-19 with a sensitivity of 94% and a specificity of 55%. It performed significantly better in predicting complicated COVID-19 than the random tree-based SACOV-19 predictive model, the CURB-65, 4C mortality, or qCSI scores. CONCLUSION: The SACOV-19 score is a feasible tool to aid decision making in acute COVID-19.

2.
Front Immunol ; 13: 889836, 2022.
Article in English | MEDLINE | ID: covidwho-2317745

ABSTRACT

Understanding immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to contain the COVID-19 pandemic. Using a multiplex approach, serum IgG responses against the whole SARS-CoV-2 proteome and the nucleocapsid proteins of endemic human coronaviruses (HCoVs) were measured in SARS-CoV-2-infected donors and healthy controls. COVID-19 severity strongly correlated with IgG responses against the nucleocapsid (N) of SARS-CoV-2 and possibly with the number of viral antigens targeted. Furthermore, a strong correlation between COVID-19 severity and serum responses against N of endemic alpha- but not betacoronaviruses was detected. This correlation was neither caused by cross-reactivity of antibodies, nor by a general boosting effect of SARS-CoV-2 infection on pre-existing humoral immunity. These findings raise the prospect of a potential disease progression marker for COVID-19 severity that allows for early stratification of infected individuals.


Subject(s)
Alphacoronavirus , COVID-19 , Antibodies, Viral , Antigens, Viral , Humans , Immunoglobulin G , Nucleocapsid Proteins , Pandemics , Proteome , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Methods Inf Med ; 62(S 01): e47-e56, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2237390

ABSTRACT

BACKGROUND: As a national effort to better understand the current pandemic, three cohorts collect sociodemographic and clinical data from coronavirus disease 2019 (COVID-19) patients from different target populations within the German National Pandemic Cohort Network (NAPKON). Furthermore, the German Corona Consensus Dataset (GECCO) was introduced as a harmonized basic information model for COVID-19 patients in clinical routine. To compare the cohort data with other GECCO-based studies, data items are mapped to GECCO. As mapping from one information model to another is complex, an additional consistency evaluation of the mapped items is recommended to detect possible mapping issues or source data inconsistencies. OBJECTIVES: The goal of this work is to assure high consistency of research data mapped to the GECCO data model. In particular, it aims at identifying contradictions within interdependent GECCO data items of the German national COVID-19 cohorts to allow investigation of possible reasons for identified contradictions. We furthermore aim at enabling other researchers to easily perform data quality evaluation on GECCO-based datasets and adapt to similar data models. METHODS: All suitable data items from each of the three NAPKON cohorts are mapped to the GECCO items. A consistency assessment tool (dqGecco) is implemented, following the design of an existing quality assessment framework, retaining their-defined consistency taxonomies, including logical and empirical contradictions. Results of the assessment are verified independently on the primary data source. RESULTS: Our consistency assessment tool helped in correcting the mapping procedure and reveals remaining contradictory value combinations within COVID-19 symptoms, vital signs, and COVID-19 severity. Consistency rates differ between the different indicators and cohorts ranging from 95.84% up to 100%. CONCLUSION: An efficient and portable tool capable of discovering inconsistencies in the COVID-19 domain has been developed and applied to three different cohorts. As the GECCO dataset is employed in different platforms and studies, the tool can be directly applied there or adapted to similar information models.


Subject(s)
COVID-19 , Data Accuracy , Humans , Consensus , Pandemics , Quality Indicators, Health Care , COVID-19/epidemiology , Data Collection
5.
MMW Fortschr Med ; 165(2): 58-61, 2023 02.
Article in German | MEDLINE | ID: covidwho-2229776
6.
Sci Data ; 9(1): 776, 2022 12 21.
Article in English | MEDLINE | ID: covidwho-2185972

ABSTRACT

Anonymization has the potential to foster the sharing of medical data. State-of-the-art methods use mathematical models to modify data to reduce privacy risks. However, the degree of protection must be balanced against the impact on statistical properties. We studied an extreme case of this trade-off: the statistical validity of an open medical dataset based on the German National Pandemic Cohort Network (NAPKON), which was prepared for publication using a strong anonymization procedure. Descriptive statistics and results of regression analyses were compared before and after anonymization of multiple variants of the original dataset. Despite significant differences in value distributions, the statistical bias was found to be small in all cases. In the regression analyses, the median absolute deviations of the estimated adjusted odds ratios for different sample sizes ranged from 0.01 [minimum = 0, maximum = 0.58] to 0.52 [minimum = 0.25, maximum = 0.91]. Disproportionate impact on the statistical properties of data is a common argument against the use of anonymization. Our analysis demonstrates that anonymization can actually preserve validity of statistical results in relatively low-dimensional data.


Subject(s)
COVID-19 , Humans , Bias , Data Anonymization , Models, Theoretical , Privacy , Data Interpretation, Statistical , Datasets as Topic
7.
Multidiscip Respir Med ; 17: 825, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-2090514

ABSTRACT

The relationship between SARS-CoV-2 quantitative viral load and risk of disease progression, morbidity such as long- COVID or mortality in immunosuppressed, remains largely undefined in COVID-19 patients. Critically ill immunosuppressed patients potentially benefit from remdesivir treatment because of the prolonged course of their infection. Four critically ill immunocompromised patients and the impact of remdesivir on viral dynamics in lower respiratory samples were studied. Bronchoalveolar lavage (BAL) samples were assessed to measure SARS-CoV-2 quantitative viral load using real-time PCR. Corresponding plasma levels of remdesivir and its metabolite GS-441524 were determined. Mean virus load of 39.74 x 107 geq/ml (±33.25 x 107 geq/ml) on day 1 dropped significantly (p<0.008) to 3.54 x 106 geq/ml (±6.93 x 106 geq/ml) on day 3 and to 1.4 x 105 geq/ml (±2.35 x 105 geq/ml) on day 5 of remdesivir treatment. Mean virus load dropped below <1% between day 1 and 5 of remdesivir treatment. Parent prodrug remdesivir and also GS441524 metabolite levels of antiviral activity in our patients were far in excess of EC 50. Our data present that remdesivir treatment potentially reduces the SARS-CoV-2 viral load in immunosuppressed critically ill patients. However, the implication of viral load reduction on morbidity and mortality needs further investigation.

8.
J Neural Transm (Vienna) ; 129(11): 1377-1385, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2059861

ABSTRACT

The prevalence of Parkinson's disease (PD) is rising, rendering it one of the most common neurodegenerative diseases. Treatment and monitoring of patients require regular specialized in- and outpatient care. Patients with PD are more likely to have a complicated disease course if they become infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Regular in-hospital appointments place these patients at risk of exposure to SARS-CoV-2 due to travel and contact with other patients and staff. However, guidelines for the management of outpatients with PD during times of increased risk of infection are currently lacking. These are urgently needed to conduct risk-benefit evaluations to recommend the best medical treatment. This article discusses best practice approaches based on the current literature, as suggested by the multidisciplinary Network of University Medicine (NUM) in Germany. These include measures such as mask-wearing, hand hygiene, social distancing measures, and appropriate testing strategies in outpatient settings, which can minimize the risk of exposure. Furthermore, the urgency of appointments should be considered. Visits of low urgency may be conducted by general practitioners or via telemedicine consultations, whereas in-person presentation is required in case of moderate and high urgency visits. Classification of urgency should be carried out by skilled medical staff, and telemedicine (telephone or video consultations) may be a useful tool in this situation. The currently approved vaccines against SARS-CoV-2 are safe and effective for patients with PD and play a key role in minimizing infection risk for patients with PD.


Subject(s)
COVID-19 , Parkinson Disease , COVID-19 Vaccines , Humans , Outpatients , Pandemics/prevention & control , Parkinson Disease/therapy , SARS-CoV-2
9.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046324

ABSTRACT

Understanding immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to contain the COVID-19 pandemic. Using a multiplex approach, serum IgG responses against the whole SARS-CoV-2 proteome and the nucleocapsid proteins of endemic human coronaviruses (HCoVs) were measured in SARS-CoV-2-infected donors and healthy controls. COVID-19 severity strongly correlated with IgG responses against the nucleocapsid (N) of SARS-CoV-2 and possibly with the number of viral antigens targeted. Furthermore, a strong correlation between COVID-19 severity and serum responses against N of endemic alpha- but not betacoronaviruses was detected. This correlation was neither caused by cross-reactivity of antibodies, nor by a general boosting effect of SARS-CoV-2 infection on pre-existing humoral immunity. These findings raise the prospect of a potential disease progression marker for COVID-19 severity that allows for early stratification of infected individuals.

10.
PLoS One ; 17(7): e0271822, 2022.
Article in English | MEDLINE | ID: covidwho-1968871

ABSTRACT

BACKGROUND: COVID-19 is a severe disease with a high need for intensive care treatment and a high mortality rate in hospitalized patients. The objective of this study was to describe and compare the clinical characteristics and the management of patients dying with SARS-CoV-2 infection in the acute medical and intensive care setting. METHODS: Descriptive analysis of dying patients enrolled in the Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS), a non-interventional cohort study, between March 18 and November 18, 2020. Symptoms, comorbidities and management of patients, including palliative care involvement, were compared between general ward and intensive care unit (ICU) by univariate analysis. RESULTS: 580/4310 (13%) SARS-CoV-2 infected patients died. Among 580 patients 67% were treated on ICU and 33% on a general ward. The spectrum of comorbidities and symptoms was broad with more comorbidities (≥ four comorbidities: 52% versus 25%) and a higher age distribution (>65 years: 98% versus 70%) in patients on the general ward. 69% of patients were in an at least complicated phase at diagnosis of the SARS-CoV-2 infection with a higher proportion of patients in a critical phase or dying the day of diagnosis treated on ICU (36% versus 11%). While most patients admitted to ICU came from home (71%), patients treated on the general ward came likewise from home and nursing home (44% respectively) and were more frequently on palliative care before admission (29% versus 7%). A palliative care team was involved in dying patients in 15%. Personal contacts were limited but more often documented in patients treated on ICU (68% versus 47%). CONCLUSION: Patients dying with SARS-CoV-2 infection suffer from high symptom burden and often deteriorate early with a demand for ICU treatment. Therefor a demand for palliative care expertise with early involvement seems to exist.


Subject(s)
COVID-19 , Aged , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Humans , Intensive Care Units , Patients' Rooms , Registries , SARS-CoV-2
11.
PLoS One ; 17(5): e0268530, 2022.
Article in English | MEDLINE | ID: covidwho-1865342

ABSTRACT

BACKGROUND: COVID-19 has so far affected more than 250 million individuals worldwide, causing more than 5 million deaths. Several risk factors for severe disease have been identified, most of which coincide with advanced age. In younger individuals, severe COVID-19 often occurs in the absence of obvious comorbidities. Guided by the finding of cytomegalovirus (CMV)-specific T cells with some cross-reactivity to SARS-CoV-2 in a COVID-19 intensive care unit (ICU) patient, we decided to investigate whether CMV seropositivity is associated with severe or critical COVID-19. Herpes simplex virus (HSV) serostatus was investigated as control. METHODS: National German COVID-19 bio-sample and data banks were used to retrospectively analyze the CMV and HSV serostatus of patients who experienced mild (n = 101), moderate (n = 130) or severe to critical (n = 80) disease by IgG serology. We then investigated the relationship between disease severity and herpesvirus serostatus via statistical models. RESULTS: Non-geriatric patients (< 60 years) with severe COVID-19 were found to have a very high prevalence of CMV-seropositivity, while CMV status distribution in individuals with mild disease was similar to the prevalence in the German population; interestingly, this was not detectable in older patients. Prediction models support the hypothesis that the CMV serostatus, unlike HSV, might be a strong biomarker in identifying younger individuals with a higher risk of developing severe COVID-19, in particular in absence of other co-morbidities. CONCLUSIONS: We identified 'CMV-seropositivity' as a potential novel risk factor for severe COVID-19 in non-geriatric individuals in the studied cohorts. More mechanistic analyses as well as confirmation of similar findings in cohorts representing the currently most relevant SARS-CoV-2 variants should be performed shortly.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Herpes Simplex , Aged , Antibodies, Viral , COVID-19/epidemiology , Cytomegalovirus , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/epidemiology , Humans , Retrospective Studies , Risk Factors , SARS-CoV-2
12.
Multidiscip Respir Med ; 17(1): 815, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1855948

ABSTRACT

Background: To assess the prevalence of Herpes simplex and Cytomegalovirus infection in respiratory samples of critically-ill COVID-19 patients, its role in outcome and mortality and the influence of dexamethasone treatment in the early stage of SARS-CoV-2 infection. Methods: All mechanically ventilated COVID-19 patients treated on ICU between March 2020 and January 2021 were included. Respiratory specimens were tested for Herpes simplex virus (HSV) type 1, 2 and Cytomegalovirus (CMV) by quantitative real-time PCR. Clinical parameters were compared in the cohorts with and without HSV-1- infection. Results: 134 patients with a median age of 72.5 years (73.0% male, n=98) were included. HSV-1 reactivation occurred in 61 patients (45.5%), after median 9 (7-13) days of mechanical ventilation. The main factor for reactivation was length of stay on ICU (24 days vs 13 days, p<0.001) and duration of mechanical ventilation (417 vs 214 hours, p<0.001). Treatment with dexamethasone and a history of immunosuppression did not associate with HSV-infection in the univariate analysis (39 vs 41, p=0.462 and 27.9% vs 23.3%, p=0.561, respectively). Both ICU and hospital mortality were not significantly different in the cohorts with and without HSV-infection (57.4% vs 45.2%, p=0.219). Conclusions: Our study shows a high prevalence of HSV-infection in critically-ill COVID-19 patients which was unexpectedly higher than the prevalence of CMV-infections and unrelated to dexamethasone treatment. The main risk factors for HSV and CMV in the studied cohorts were the length of ICU stay and duration of mechanical ventilation. Therefore, we recommend routine monitoring of critically ill COVID-19 patients for these viral co-infections and consider treatment in those patients.

13.
Multidisciplinary Respiratory Medicine ; 17(1), 2022.
Article in English | EuropePMC | ID: covidwho-1755701

ABSTRACT

Background To assess the prevalence of Herpes simplex and Cytomegalovirus infection in respiratory samples of critically-ill COVID-19 patients, its role in outcome and mortality and the influence of dexamethasone treatment in the early stage of SARS-CoV-2 infection. Methods All mechanically ventilated COVID-19 patients treated on ICU between March 2020 and January 2021 were included. Respiratory specimens were tested for Herpes simplex virus (HSV) type 1, 2 and Cytomegalovirus (CMV) by quantitative real-time PCR. Clinical parameters were compared in the cohorts with and without HSV-1- infection. Results 134 patients with a median age of 72.5 years (73.0% male, n=98) were included. HSV-1 reactivation occurred in 61 patients (45.5%), after median 9 (7-13) days of mechanical ventilation. The main factor for reactivation was length of stay on ICU (24 days vs 13 days, p<0.001) and duration of mechanical ventilation (417 vs 214 hours, p<0.001). Treatment with dexamethasone and a history of immunosuppression did not associate with HSV-infection in the univariate analysis (39 vs 41, p=0.462 and 27.9% vs 23.3%, p=0.561, respectively). Both ICU and hospital mortality were not significantly different in the cohorts with and without HSV-infection (57.4% vs 45.2%, p=0.219). Conclusions Our study shows a high prevalence of HSV-infection in critically-ill COVID-19 patients which was unexpectedly higher than the prevalence of CMV-infections and unrelated to dexamethasone treatment. The main risk factors for HSV and CMV in the studied cohorts were the length of ICU stay and duration of mechanical ventilation. Therefore, we recommend routine monitoring of critically ill COVID-19 patients for these viral co-infections and consider treatment in those patients.

15.
Emerg Infect Dis ; 28(3): 572-581, 2022 03.
Article in English | MEDLINE | ID: covidwho-1706937

ABSTRACT

Hospital staff are at high risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the coronavirus disease (COVID-19) pandemic. This cross-sectional study aimed to determine the prevalence of SARS-CoV-2 infection in hospital staff at the University Hospital rechts der Isar in Munich, Germany, and identify modulating factors. Overall seroprevalence of SARS-CoV-2-IgG in 4,554 participants was 2.4%. Staff engaged in direct patient care, including those working in COVID-19 units, had a similar probability of being seropositive as non-patient-facing staff. Increased probability of infection was observed in staff reporting interactions with SARS-CoV-2‒infected coworkers or private contacts or exposure to COVID-19 patients without appropriate personal protective equipment. Analysis of spatiotemporal trajectories identified that distinct hotspots for SARS-CoV-2‒positive staff and patients only partially overlap. Patient-facing work in a healthcare facility during the SARS-CoV-2 pandemic might be safe as long as adequate personal protective equipment is used and infection prevention practices are followed inside and outside the hospital.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Germany/epidemiology , Health Personnel , Hospitals, University , Humans , Immunoglobulin G , Infection Control , Personnel, Hospital , Prevalence , Seroepidemiologic Studies
16.
Gut Microbes ; 14(1): 2031840, 2022.
Article in English | MEDLINE | ID: covidwho-1692369

ABSTRACT

There is a growing debate about the involvement of the gut microbiome in COVID-19, although it is not conclusively understood whether the microbiome has an impact on COVID-19, or vice versa, especially as analysis of amplicon data in hospitalized patients requires sophisticated cohort recruitment and integration of clinical parameters. Here, we analyzed fecal and saliva samples from SARS-CoV-2 infected and post COVID-19 patients and controls considering multiple influencing factors during hospitalization. 16S rRNA gene sequencing was performed on fecal and saliva samples from 108 COVID-19 and 22 post COVID-19 patients, 20 pneumonia controls and 26 asymptomatic controls. Patients were recruited over the first and second corona wave in Germany and detailed clinical parameters were considered. Serial samples per individual allowed intra-individual analysis. We found the gut and oral microbiota to be altered depending on number and type of COVID-19-associated complications and disease severity. The occurrence of individual complications was correlated with low-risk (e.g., Faecalibacterium prausznitzii) and high-risk bacteria (e.g., Parabacteroides ssp.). We demonstrated that a stable gut bacterial composition was associated with a favorable disease progression. Based on gut microbial profiles, we identified a model to estimate mortality in COVID-19. Gut microbiota are associated with the occurrence of complications in COVID-19 and may thereby influencing disease severity. A stable gut microbial composition may contribute to a favorable disease progression and using bacterial signatures to estimate mortality could contribute to diagnostic approaches. Importantly, we highlight challenges in the analysis of microbial data in the context of hospitalization.


Subject(s)
COVID-19/microbiology , Dysbiosis/microbiology , Gastrointestinal Microbiome , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/complications , COVID-19/mortality , Disease Progression , Dysbiosis/etiology , Feces/microbiology , Female , Humans , Male , Microbiota , Middle Aged , SARS-CoV-2 , Saliva/microbiology , Severity of Illness Index
17.
Frontiers in cardiovascular medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1678911

ABSTRACT

Neutrophils and platelets are among the most abundant cell types in peripheral blood and characterized by high plasticity and a readily available reservoir of surface proteins and secretable granule contents. Receptor-mediated activation and granule release predispose both cell types for rapid responses to various stimuli. While neutrophils provide the first line of defense to microbial infections and platelets are known for their aggregatory functions in hemostasis and thrombosis, research of the past decade has highlighted that both cell types jointly shape local and systemic immune responses and clot formation alike. Concomitant activation of neutrophils and platelets has been observed in a variety of cardiovascular diseases, including arterial and venous thrombosis, atherosclerosis as well as myocardial infarction and ischemia-reperfusion injury. In this review, we describe the mechanisms by which neutrophils and platelets interact physically, how release of granule contents and soluble molecules by either cell type affects the other and how this mutual activation supports the efficacy of immune responses. We go on to describe how activated platelets contribute to host defense by triggering neutrophil extracellular trap (NET) formation in a process termed immunothrombosis, which in turn promotes local platelet activation and coagulation. Further, we review current evidence of hazardous overactivation of either cell type and their respective role in cardiovascular disease, with a focus on thrombosis, myocardial infarction and ischemia-reperfusion injury, and describe how neutrophils and platelets shape thromboinflammation in COVID-19. Finally, we provide an overview of therapeutic approaches targeting neutrophil-platelet interactions as novel treatment strategy in cardiovascular disease.

18.
Nat Commun ; 13(1): 153, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616980

ABSTRACT

Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , Convalescence , Nucleocapsid/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Flow Cytometry/methods , Follow-Up Studies , Humans , Immunoglobulin G/immunology , Interleukin-2/immunology , Interleukin-2/metabolism , Kinetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Vaccination/methods
19.
Cell Rep ; 38(2): 110214, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588141

ABSTRACT

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Cells, Cultured , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology
20.
J Clin Med ; 10(23)2021 Nov 23.
Article in English | MEDLINE | ID: covidwho-1538417

ABSTRACT

Long-term health consequences in survivors of severe COVID-19 remain unclear. Eighteen COVID-19 patients admitted to the intensive care unit at the University Hospital Rechts der Isar, Munich, Germany, between 14 March and 23 June 2020, were prospectively followed-up at a median of 36, 75.5, 122 and 222 days after discharge. The health-related quality of life (HrQoL) (36-item Short Form Health Survey and St. George's Respiratory Questionnaire, SGRQ), cardiopulmonary function, laboratory parameters and chest imaging were assessed longitudinally. The HrQoL assessment revealed a reduced physical functioning, as well as increased SGRQ impact and symptoms scores that all improved over time but remained markedly impaired compared to the reference groups. The median radiological severity scores significantly declined; persistent abnormalities were found in 33.3% of the patients on follow-up. A reduced diffusion capacity was the most common abnormal pulmonary function parameter. The length of hospitalization correlated with role limitations due to physical problems, the SGRQ symptom and the impact score. In conclusion, in survivors of severe COVID-19, the pulmonary function and symptoms improve over time, but impairments in their physical function and diffusion capacity can persist over months. Longer follow-up studies with larger cohorts will be necessary to comprehensively characterize long-term sequelae upon severe COVID-19 and to identify patients at risk.

SELECTION OF CITATIONS
SEARCH DETAIL